Yb:KGW

Yb3+:KGd(WO4)2(Yb:KGW)是最有前途的激光活性材料之一。Yb:KGW晶體有望取代Nd:YAG晶體和Yb:YAG晶體應(yīng)用于大功率二極管泵浦激光系統(tǒng)。Yb:KGW在高功率、短脈沖飛秒激光及其廣泛應(yīng)用方面也具有巨大的潛力。
Yb3:KGW具有大的吸收系數(shù),低的量子缺陷,高的吸收和發(fā)射截面
Yb離子簡單的二能級電子結(jié)構(gòu)避免了上轉(zhuǎn)換、激發(fā)態(tài)吸收和濃度猝滅等非期望的損耗過程。與常用的Nd:YAG晶體相比,Yb:KGW晶體具有更大的吸收帶寬、3-4倍的發(fā)射壽命、更高的存儲容量、更低的量子缺陷,更適合于二極管泵浦。斯托克斯位移越小,加熱越小,激光效率越高。與Yb:YAG和Yb:YCOB等摻Y(jié)b激光晶體相比,Yb:KGW具有更高的吸收截面(13-17倍)、更低的量子缺陷(~4%)、比Yb:YCOB高9倍的發(fā)射截面和比Yb:YAG寬的發(fā)射帶、高的非線性折射系數(shù)和斜率效率最高(87%)。
特點
- 吸收線寬度寬,無需嚴格的溫度控制即可獲得相位匹配的LD泵浦源的泵浦波長;
- 量子缺陷低,泵浦波長非常接近激光輸出波長,導(dǎo)致固有的激光斜率效率高,理論上量子效率可達90%左右;
- 由于泵浦的能級接近激光的上限,因此沒有輻射弛豫的材料中的熱負荷很低,僅是摻釹釹激光材料的熱負荷的三分之一;
- 無激發(fā)態(tài)吸收和上轉(zhuǎn)換,光轉(zhuǎn)換效率高;
- 熒光壽命長,是相同的摻釹激光材料的三倍以上,有利于能量存儲;
物理和化學(xué)特性
化學(xué)式 | Yb3+:KGd(WO4)2 |
晶體結(jié)構(gòu) | 單斜雙鎢酸鹽 |
密度 | 7.27 g/cm3 |
傳輸范圍 | 0.35-5.5 μm |
莫氏硬度 | 4 to 5 |
1060 nm的折射率 | ng?= 2.037, np?= 1.986, nm=2.033 |
光學(xué)和熱學(xué)特性
導(dǎo)熱系數(shù) | Ka=2.6 W/mK, Kb=3.8 W/mK, Kc=3.4 W/mK |
熱光學(xué)系數(shù)@ 1064 nm | dnp/dT=-15.7 * 10-6?K-1 |
dnm/dT=-11.8 * 10-6?K-1 | |
dng/dT=-17.3 * 10-6?K-1 | |
熱膨脹 | αa=4X10-6?/°C |
αb=3.6X10-6?/°C | |
αc=8.5X10-6?/°C | |
熔點溫度 | 1075?°C |
吸收截面 | 1.2X10-19?cm2 |
受激發(fā)射橫截面(E || a) | 2.6X10-20?cm2 |
激光波長 | 1023-1060 nm |
激光閾值 | 35 mW |
Yb3 +的2F5/2歧管在77 K時的純能級(cm-1) | 10682, 10471, 10188 |
在77K時,Yb3 +的2F7/2流形的斯塔克能級(以cm-1為單位) | 535, 385, 163, 0 |
光學(xué)損傷閾值,GW / cm2 | 20 |
光譜性質(zhì)
吸收峰波長,lpump,[nm] | 981.2 |
吸收線寬,Dlpump,[nm] | 3.7 |
峰吸收橫截面,冒泡,[cm2] | 1.2×10-19 |
峰值吸收系數(shù),[cm-1] | 26 |
發(fā)射波長,lse,[nm] | 1023 |
發(fā)射線寬,Dlse,[nm] | 20 |
峰值發(fā)射截面,sse,[cm2] | 2.8×10-20 |
量子效應(yīng),lpump / lse,[nm] | 0.959 |
熒光壽命,tem [ms] | 0.6 |
吸收和發(fā)射光譜
![]() |
參考文獻
[1]? Major A ,? Cisek R ,? Greenhalgh C , et al. A diode-pumped high power extended cavity femtosecond Yb:KGW laser: From development to applications in nonlinear microscopy[C]// Photonics North 2006. 2006. |
[2]? Zhao H ,? Major A . Megawatt peak power level sub-100 fs Yb:KGW oscillators[J]. Optics Express, 2014, 22(25):30425-31. |
[3]? Paunescu G ,? Hein J ,? Sauerbrey R . 100-fs diode-pumped Yb:KGW mode-locked laser[J]. Applied Physics B, 2004, 79(5):555-558. |
[4]? Kuleshov N V ,? Lagatsky A A ,? Shcherbitsky V G , et al. CW laser performance of Yb and Er,Yb doped tungstates[J]. Applied Physics B, 1997, 64(4):409-413. |
[5]? Holtom G R . Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars[J]. Optics Letters, 2006, 31(18):2719-21. |
[6]? Kuleshov N V ,? Lagatsky A A ,? Podlipensky A V , et al. Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2).[J]. Optics Letters, 1997, 22(17):1317-9. |
[7]? Zhao H ,? Major A . Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator[J]. Optics Express, 2013, 21(26):31846-31851. |
[8]? Pekarek S ,? Fiebig C ,? Stumpf M C , et al. Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW[J]. Optics Express, 2010, 18(16):16320-16326. |
[9]? Hellstroem J E ,? Bjurshagen S ,? Pasiskevicius V , et al. Efficient Yb:KGW lasers end-pumped by high-power diode bars[J]. Applied Physics B, 2006, 83(2):235-239. |
[10]? Major A , D Sandkuijl,? Barzda V . Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal[J]. Optics Express, 2009, 17(14):12039-42. |
[11] S Chénais,? Druon F ,? Balembois F , et al. Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW[J]. Optical Materials, 2003, 22(2):129-137. |
[12]? Major A , D Sandkuijl,? Barzda V . A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output[J]. Laser Physics Letters, 2010, 6(11):779-781. |
[13]? Hellstrm J E ,? Bjurshagen S ,? Pasiskevicius V . Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation[J]. Applied Physics B, 2006, 83(1):55-59. |
[14]? Akbari R ,? Zhao H ,? Fedorova K A , et al. Quantum-Dot Saturable Absorber and Kerr Lens Mode-Locked Yb:KGW Laser with >300 kW of Peak Power[J]. Optics Letters, 2016, 41(16). |
[15]? Russbueldt P ,? Mans T ,? Weitenberg J , et al. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier[J]. Optics Letters, 2010, 35(24):4169-71. |
[16]? Sandkuijl D ,? Cisek R ,? Major A , et al. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator[J]. Biomedical Optics Express, 2010, 1(3):895-901. |
[17]? Hellstrm J ,? Henricsson H ,? Pasiskevicius V , et al. Polarization-tunable Yb:KGW laser based on internal conical refraction[J]. Optics Letters, 2007, 32(19):2783-2785. |
[18]? Joel A , Berger,? Michael J , et al. High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator.[J]. Optics express, 2008. |
[19]? Major A ,? Cisek R ,? Barzda V . Development of diode-pumped high average power continuous-wave and ultrashort pulse Yb:KGW lasers for nonlinear microscopy[C]// Commercial and Biomedical Applications of Ultrafast Lasers VI. International Society for Optics and Photonics, 2006. |
[20] Alexander, Klenner, Matthias, et al. A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal[J]. Optics Express, 2013. |
[21]? Erhard S ,? Gao J ,? Giesen A , et al. High power Yb:KGW and Yb:KYW thin disk laser operation[C]// Conference on Lasers & Electro-optics. IEEE, 2001. |
[22]? Zhao H ,? Major A . Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing[J]. Applied Physics B, 2016, 122(6):1-6. |
[23]? Akbari R ,? Zhao H ,? Major A . High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser[J]. Optics Letters, 2016, 41(7):1601. |
[24] T Bal?iūnas, OD Mücke, P Mi?eikis, et al. Carrier envelope phase stabilization of a Yb:KGW laser amplifier[J]. Optics Letters, 2011, 36(16):3242. |
[25]? Lagatsky A A ,? Abdolvand A ,? Kuleshov N V . Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser[J]. Optics Letters, 2000, 25(9):616-8. |
[26]? Molis G ,? Adomavicius R ,? Krotkus A , et al. Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser[J]. Electronics Letters, 2007, 43(3):190-191. |
[27]? Hoos F ,? Li S ,? Meyrath T P , et al. Thermal lensing in an end-pumped Yb : KGW slab laser with high power single emitter diodes[J]. Optics Express, 2008, 16(9):6041-6049. |
[28]? Kisel V E ,? Rudenkov A S ,? Pavlyuk A A , et al. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser[J]. Optics Letters, 2015, 40(12):2707-10. |
與Yb:KGW相關(guān)的案例:
與Yb:KGW相關(guān)的解決方案:
暫無與本產(chǎn)品相關(guān)的解決方案,請訪問芯飛睿的解決方案頁面了解其他解決方案。
與Yb:KGW相關(guān)的視頻: